
Human
Interface
Guidelines
v2.0

Kinect for Windows | Human Interface Guidelines v2.0 2

©2014 Microsoft Corporation. All rights reserved.

Acknowledgement and waiver
You acknowledge that this document is provided “as-is,” and that
you bear the risk of using it. (Information and views expressed in this
document, including URL and other Internet Web site references, may
change without notice.) This document does not provide you with
any legal rights to any intellectual property in any Microsoft product.
The information in this document is also not intended to constitute
legal or other professional advice or to be used as a substitute for
specific advice from a licensed professional. You should not act
(or refrain from acting) based on information in this document
without obtaining professional advice about your particular facts
and circumstances. You may copy and use this document for your
internal, reference purposes. In using the Kinect software and Kinect
sensors described in this document, you assume all risk that your use
of the Kinect sensors and/or the software causes any harm or loss,
including to the end users of your Kinect for Windows applications,
and you agree to waive all claims against Microsoft and its affiliates
related to such use (including but not limited to any claim that
a Kinect sensor or the Kinect software is defective) and to hold
Microsoft and its affiliates harmless from such claims.

Microsoft, Kinect, Windows, and Xbox are registered trademarks,
and Xbox 360 and Xbox One are trademarks, of the Microsoft group
of companies. All other trademarks are property of their respective
owners.

Kinect for Windows | Human Interface Guidelines v2.0 3

Contents Introduction
Learn about the Kinect for Windows sensor and SDK, and how
placement and environment affect its use

Interaction Design Tenets for Kinect for Windows
Learn about our design principles and how to design the best
input for the task

Gesture
Learn interaction design considerations for various types of gesture

Voice
Learn interaction design considerations for voice, including language
and audio considerations

Feedback
Learn about interaction design considerations for gestural and audio
feedback, text prompts, and more

Basic Interactions
Learn about the areas of the Kinect screen and user space, plus
details on engaging, targeting, selecting, panning and scrolling,
zooming, and entering text

Additional Interactions
Learn about distance-dependent interactions, and designing
for multiple inputs and users

Conclusion

4

14

21

46

60

77

118

135

Kinect for Windows | Human Interface Guidelines v2.0 4

Introduction
Welcome to the world of Microsoft Kinect for
Windows–enabled applications. This document
is your roadmap to building exciting human-
computer interaction solutions you once
thought were impossible.

We want to help make your experience with
Microsoft Kinect for Windows, and your users’
experiences, the best. So, we’re going to set
you off on a path toward success by sharing
our most effective design tips, based on our
long-term design, development, and usability
work. You’ll be able to focus on all those unique
challenges you want to tackle.

Keep this guide at hand – because, as we
regularly update it to reflect both our ongoing
findings and the evolving capabilities of Kinect
for Windows, you’ll stay on the cutting edge.

Before we get into design tips, it will help
to start with a couple of basics: a quick
introduction to the Kinect for Windows sensor,
software development kit (SDK), and Developer
Toolkit, and some environment and sensor
setup considerations.

Introduction

Kinect for Windows | Human Interface Guidelines v2.0 4

Kinect for Windows | Human Interface Guidelines v2.0 5

Meet the Kinect
for Windows
v2 Sensor and
SDK 2.0
The Kinect for Windows v2 sensor and SDK 2.0
provide the ears and eyes of your application.
You’ll want to keep their capabilities in mind as
you design your application.

Introduction > Meet the Kinect for Windows Sensor and SDK

Kinect for Windows | Human Interface Guidelines v2.0 6

Introduction > Meet the Kinect for Windows Sensor and SDK

How Kinect for
Windows sensor,
SDK, and Toolkit work
together
The Kinect for Windows v2 Sensor, SDK, and
Toolkit work as a team to provide new and
exciting capabilities to your application.

Kinect for Windows v2 Sensor

Provides raw color image frames from the RGB camera, depth image frames from the depth
camera, and audio data from the microphone array to the SDK.

Kinect for Windows SDK 2.0

Processes the raw data from the sensor to provide you with information such as skeleton
tracking for up to six people, and word recognition from audio data for a given language. The
SDK also provides code samples that show how to use features of the SDK and components
such as Kinect Button and Kinect Cursor, which help you build interfaces faster. Using the
components in the SDK lets you focus on your unique app and makes the user experience
of your application consistent with other Kinect for Windows-enabled applications. You can
download the SDK free from www.KinectforWindows.com.

The following sections cover what this team of products does to bring natural experiences to your
application. When we say “Kinect for Windows,” we mean the Kinect for Windows v2 Sensor and
the SDK working together, unless otherwise specified.

http://www.microsoft.com/en-us/kinectforwindows/

Kinect for Windows | Human Interface Guidelines v2.0 7

What Kinect for
Windows sees
Kinect for Windows is versatile. It can see
people’s full body movement as well as small
hand gestures. Up to xix people can be tracked
as whole skeletons. The Kinect for Windows v2
Sensor has an RGB (red-green-blue) camera for
color video, and an infrared emitter and camera
that measure depth in millimeter resolutions.

The Kinect for Windows v2 Sensor enables a
wide variety of interactions, but any sensor has
“sweet spots” and limitations. With this in mind,
we defined its focus and limits as follows:

Physical limits – The actual capabilities of the
sensor and what it can see.

Sweet spots – Areas where people experience
optimal interactions, given that they’ll often
have a large range of movement and need to
be tracked with their arms or legs extended.

60°

70°

sweet spot
physical limits0.5m/1ft

4.5m/14.75ft

1m/3ft

4m/13ft

• Physical limits: 0.5m to 4.5m
 (default)

• Sweet spot: 0.8m to 3.5m

• The depth sensor can also
 see from 4.5m to 8m, but
 body detection does not
 work in this extended range.

Body

• Horizontal: 70 degrees

• Vertical: 60 degrees

Angle of vision (depth)

Introduction > Meet the Kinect for Windows Sensor and SDK

Kinect for Windows | Human Interface Guidelines v2.0 8

Skeleton tracking

Full skeleton mode

Seated mode

Kinect for Windows v2 can
track up to six people within
its view as whole skeletons
with 25 joints. Skeletons can
be tracked whether the user
is standing or seated.

Kinect for Windows can
track skeletons in default full
skeleton mode with 25 joints.

Kinect for Windows can also
track seated skeletons with
only the upper 10 joints.

Introduction > Meet the Kinect for Windows Sensor and SDK

Kinect for Windows | Human Interface Guidelines v2.0 9

Audio input

Microphone array

Sound threshold

The Kinect for Windows v2
Sensor detects audio input
from + and – 50 degrees in
front of the sensor.

The microphone array can be
pointed at 5-degree increments
within the 180-degree range.

This can be used to be
specific about the direction
of important sounds, such as
a person speaking, but it will
not completely remove other
ambient noise.

The microphone array can
cancel 20dB (decibels) of
ambient noise, which improves
audio fidelity. That’s about
the sound level of a whisper.
(Kinect for Windows supports
monophonic sound cancellation,
but not stereophonic.)

Sound coming from behind the
sensor gets an additional 6dB
suppression based on the design
of the microphone housing.

What Kinect for
Windows hears
Kinect for Windows is unique because its single
sensor captures both voice and gesture, from
face tracking and small movements to whole-
body. The sensor has four microphones that
enable your application to respond to verbal
input, in addition to responding to movement.

For more information about audio and
voice issues, see Voice, later in this
document.

20 decibels
cancelled

Introduction > Meet the Kinect for Windows Sensor and SDK

Kinect for Windows | Human Interface Guidelines v2.0 10

Directional microphone

Loudest source targeting

You can also programmatically
direct the microphone array
– for example, toward a
set location, or following a
skeleton as it’s tracked.

By default, Kinect for
Windows tracks the loudest
audio input.

track me!

Introduction > Meet the Kinect for Windows Sensor and SDK

Kinect for Windows | Human Interface Guidelines v2.0 11

Introduction > Consider Sensor Placement and Environment

Consider Sensor
Placement and
Environment
The situation in which your Kinect for
Windows–enabled application is used can
affect how users perceive its reliability and
usability. Don’t forget to test your application
early (and often) with the kind of environment
and setup you expect it to ultimately be used
in. Consider the following factors when you
design your application.

For more information, see Choose the
Right Environment for Voice, and Best
Setup for Controls and Interactions,
later in this document.

Kinect for Windows | Human Interface Guidelines v2.0 12

Introduction > Consider Sensor Placement and Environment

Will many people be moving around the sensor?

You’ll want an optimal setup and space where no one comes between the engaged user and the
sensor. For example, you might want an interaction area defined by using a sticker on the floor
to indicate where the user should stand, or by roping off an area so that people walk around.

Will you rely on voice as an input method?

Voice input requires a quiet environment for reliable results. If you can’t control ambient noise level,
try designing for user interaction closer to the sensor. If a noisy environment is unavoidable,
voice might work better as augmenting other inputs (but not as the sole input method).

How far back are your users?

Consider what they can comfortably see. Design your user interface to account for the distance
at which people will interact, within the range of the sensor. Users who are older or visually
impaired might need graphics or fonts to be larger.

What will the lighting situation be?

Lighting affects image quality in different ways. So, if you envision a particular design, you’ll
want to specify that users check their lighting; and if you expect a certain kind of lighting, you’ll
need to design around those limitations. For example, ideally the light will come from behind
the sensor. The infrared depth camera works in all lighting situations (even darkness), but better
in moderate light than in direct sunlight or full-spectrum lighting. Dim lighting is fine for depth-
sensing applications (such as using avatars); with large amounts of natural light, skeleton tracking
is less reliable. On the other hand, color image quality does require good lighting (for example, if
you’ll use green-screening).

Kinect for Windows | Human Interface Guidelines v2.0 13

Introduction > Consider Sensor Placement and Environment

How will your users dress?

Items that drastically change the shape of a person wearing or holding them might confuse
skeleton tracking. For example, black clothing, as well as reflective items, can interfere with the
infrared camera and make skeleton tracking less reliable.

Where will the sensor be placed?

Because your users will be interacting with the screen, place the sensor above or below the
screen, to directly face the subjects it’s expected to track. Avoid extreme tilt angles. If you’re
using the Kinect for Windows controls and interactions we provide, the distance between the
user and the sensor that will provide the most reliable behavior is between 1.5 and 2 meters.
If your scenario involves simple motion or blob detection and doesn’t rely on skeleton tracking,
you can mount the sensor to the ceiling or at other angles.

Kinect for Windows | Human Interface Guidelines v2.0 14

Interaction Design
Tenets for
Kinect for Windows
Kinect for Windows opens up a new world of
gesture design and voice design.

14

Interaction Design Tenets for Kinect for Windows

Kinect for Windows | Human Interface Guidelines v1.8

Kinect for Windows | Human Interface Guidelines v2.0 15

Overall Design
Principles
Before we go into to our design guidelines,
we recommend you first read this brief
section for some very important interaction
tenets. They reflect the best ways we’ve
found to employ gesture and voice, and to
avoid some thorny issues.

Keep the following in mind as you design
your interactions.

Interaction Design Tenets for Kinect for Windows > Overall Design Principles

Kinect for Windows | Human Interface Guidelines v2.0 16

The best user experiences are
context-aware.

• Your UI should adapt as the distance
 between the user and the sensor changes.

• Your UI should respond to the number and
 engagement of users.

• Place your controls based on expected
 user movements or actions.

• Make sure your interactions are appropriate
 for the environment in which your
 application will be used.

• The further the user, the wider the range
 of movement.

• The closer the user, the more and finer the
 content, tasks, and gestures.

• Environment affects user input.

Each input method is best at
something and worst at something.

• Users choose the input that requires the
 least overall effort for a given scenario.

• People tend to stick to a single input unless
 they have a reason to change.

• Input methods should be reliable,
 consistent, and convenient – otherwise
 people will look for alternative options.

• Switching input methods should happen
 intuitively, or at natural transition points in
 the scenario.

The strongest designs come after
user testing.

• Kinect for Windows enables a lot of new
 interactions, but also brings new challenges.

• It’s especially hard to guess ahead of time
 what will work and what won’t.

• Sometimes minor adjustments can make a
 huge difference.

• Conduct user tests often and early, and allow
 time in your schedule for adjustments to
 your design.

Confident users are happy users.

• It’s important to keep interactions simple,
 and easy to learn and master.

• Avoid misinterpreting user intent.

• Give constant feedback so people
 always know what’s happening and
 what to expect.

Interaction Design Tenets for Kinect for Windows > Overall Design Principles

Kinect for Windows | Human Interface Guidelines v2.0 17

Strong Inputs
In order to provide a good experience and
not frustrate users, a strong voice and gesture
interaction design should fulfill a number of
requirements.

To start with, it should be natural, with an
appropriate and smooth learning curve for
users. A slightly higher learning curve, with
richer functionality, may be appropriate for
expert users who will use the application
frequently (for example, in an office setting
for daily tasks).

Interaction Design Tenets for Kinect for Windows > Strong Inputs

For more information about designing
for different distance ranges, see
Distance-Dependent Interactions,
later in this document.

Kinect for Windows | Human Interface Guidelines v2.0 18

Interaction Design Tenets for Kinect for Windows > Strong Inputs

A strong voice and gesture interaction design should be:

• Considerate of user expectations from their use of other common input
 mechanisms (touch, keyboard, mouse).

• Ergonomically comfortable.

• Low in interactional cost for infrequent or large numbers of users
 (for example, a kiosk in a public place).

• Integrated, easily understandable, user education for any new interaction.

• Precise, reliable, and fast.

• Considerate of sociological factors. People should feel comfortable
 using the input in their environment.

Kinect for Windows | Human Interface Guidelines v2.0 19

Intuitive, with easy “mental mapping.”

Efficient at a variety of distance ranges.

Easy to back out of if mistakenly started,
rather than users having to complete the
action before undoing or canceling.

Appropriate for the amount and type of
content displayed.

Interaction Design Tenets for Kinect for Windows > Strong Inputs

Kinect for Windows | Human Interface Guidelines v2.0 20

The Right Input
Mode for Your Task
As you design your interactions, keep in mind
all the input methods available to you, and the
pros and cons each have to offer.

Interaction Design Tenets for Kinect for Windows > Strong Inputs

Enable users to accomplish tasks
quickly and intuitively.

Use each input mode for what it’s
naturally best at.

Take user orientation and location
into account so that input modes are
switched only when it’s convenient and
benefits productivity.

Force users to use inappropriate input
methods for certain tasks just because
they’re good for other tasks in the scenario.

Require an input method that feels
forced, unnatural, awkward, or tedious.

Do Don’t

Switch input modes for the sake of
variety or effect.

Natural actions

If one interaction is better at
a given task, consider using
that one instead of forcing
all interactions into one
input mode.

For example, for entering text, let people use their physical keyboard
or a touch interface instead of gesturing.

Kinect for Windows | Human Interface Guidelines v2.0 21

Gesture
This section begins by providing some
important gesture definitions and goes on to
recommend a number of important design
considerations for gesture interaction.

Gesture

21Kinect for Windows | Human Interface Guidelines v1.8

Kinect for Windows | Human Interface Guidelines v2.0 22

Basics
In this document we use the term gesture
broadly to mean any form of movement that
can be used as an input or interaction to
control or influence an application. Gestures
can take many forms, from simply using your
hand to target something on the screen, to
specific, learned patterns of movement, to
long stretches of continuous movement using
the whole body.

Gesture is an exciting input method to
explore, but it also presents some intriguing
challenges. Following are a few examples of
commonly used gesture types.

Gesture > Basics

Kinect for Windows | Human Interface Guidelines v2.0 23

Innate gestures

Learned gestures

Gestures that the user
intuitively knows or that
make sense, based on the
person’s understanding of
the world, including any skills
or training they might have.

Examples:

• Pointing to aim

• Grabbing to pick up

• Pushing to select

Gestures you must teach the
user before they can interact
with Kinect for Windows.

Examples:

• Press and hold to engage

• Making a specific pose to
 cancel an action

Innate and learned
gestures
You can design for innate gestures that people
may already be familiar with, as well as ones
they’ll need to learn and memorize.

Gesture > Basics

Press & hold to engage

Kinect for Windows | Human Interface Guidelines v2.0 24

Static gesture

Continuous gesture

A pose or posture that the
user must match and that
the application recognizes as
meaningful.

Prolonged tracking of
movement where no specific
pose is recognized but the
movement is used to interact
with the application.

Static, dynamic, and
continuous gestures
Whether users know a given gesture by
heart or not, the gestures you design
for your Kinect for Windows application
can range from a single pose to a more
prolonged motion.

Gesture > Basics

Dynamic gesture

A defined movement that
allows the user to directly
manipulate an object
or control and receive
continuous feedback.

Slide to confirm Confirmed!

Pressing to select and gripping to move are examples of
dynamic gestures.

Examples include enabling a user to pick up a virtual box or perform
a whole-body movement.

Be wary of designing for symbolic static gestures such as “okay”
that might carry different meanings across cultures.

Kinect for Windows | Human Interface Guidelines v2.0 25

Gesture
Interaction
Design
With Kinect for Windows, you can explore
the new and innovative field of gesture
interaction design. Here are some of our
key findings and considerations in making
gesture designs feel “magical.”

Gesture > Gesture Interaction Design

Kinect for Windows | Human Interface Guidelines v2.0 26

Users should agree with these statements as they use gesture
in your application:

• I quickly learned all the basic gestures.

• Now that I learned a gesture, I can quickly and accurately perform it.

• When I gesture, I’m ergonomically comfortable.

• When I gesture, the application is responsive and provides both immediate
 and ongoing feedback.

Accomplish gesture
goals
The users’ goal is to accomplish their tasks
efficiently, easily, and naturally. Your goal is to
enable them to fulfill theirs.

Gesture > Gesture Interaction Design

Kinect for Windows | Human Interface Guidelines v2.0 27

Gesture > Gesture Interaction Design

Design for reliability
Reliability should be a top priority.
Without reliability, your application will
feel unresponsive and difficult to use, and
frustrate your users. Try to strike a good
reliability balance.

Teach users how to effectively perform
a gesture.

Instill confidence so users can show
others how to perform a gesture.

Teach users how to perform a gesture
early in the experience so they can
use it in similar contexts.

Consider the frequency and cost of
false activations.

Drive users to other modes of input/
interaction because of poor reliability.

Require such rigid gestures that users
develop superstitious behaviors, like
making up incorrect justifications for
reactions they don’t understand.

Do Don’t

Use different gestures for similar actions
unless there is too much overlap
between the gestures and natural
variation in users’ movement.

Design multiple gestures that are
too similar.

• If the gesture is too circumscribed, unique, or complex, there will be fewer “false
 positives,” but it might be hard to perform.

• If the gesture is too unspecific or simple, it will be easier to perform, but might
 have lots of false positives and/or conflicts with other gestures.

For more information about false
positives, see Engagement, later in this
document.

Kinect for Windows | Human Interface Guidelines v2.0 28

Design for
appropriate user
mindset
If you’re designing a non-gaming Kinect for
Windows–enabled application, or a specific UI
item such as a menu, keep in mind that game
mindset is NOT the same as UI mindset.

As you design, keep conscious of the purpose
of your application and the nature of your
users, and design accordingly.

Gesture > Gesture Interaction Design

Game mindset

Challenge is fun! If a user is
in game mindset and can’t
perform a gesture, then it’s
a challenge to master it and
do better next time.

UI mindset

Challenge is frustrating. If
a user is in UI mindset and
can’t perform a gesture, he
or she will be frustrated and
have low tolerance for any
learning curve.

In game mindset, a silly gesture can be fun or entertaining.

In UI mindset, a silly gesture is awkward or unprofessional.

Kinect for Windows | Human Interface Guidelines v2.0 29

Design for natural
interactions
Gesture might provide a cool new method of
interacting with your application, but keep in
mind that its use should be purposeful.

Gesture > Gesture Interaction Design

Allow people to interact from a distance.

Allow gesture to enable an
interaction or expression that other
input devices can’t.

Center part of the interaction on
user tracking and poses – things that
Kinect for Windows does best.

Try to force-fit gesture or voice on
existing UI that was designed for a
different input method.

For example, don’t simply
map gestures to a touch
interface.

Require gestures for tasks that could be
done faster and more easily by using
another input method.

Require that gestures be used for
productivity, speed, and precision tasks.

Do Don’t

Provide multiple ways to perform a task
if environment or context might change.

Kinect for Windows | Human Interface Guidelines v2.0 30

Gesture > Gesture Interaction Design

Determine user intent
and engagement
Determining user intent is a key issue, and
hard to do right. Unlike other input devices,
which require explicit contact from a user, or
only track a tiny area of a person’s body, Kinect
for Windows sees a person holistically. Kinect
for Windows users are constantly moving and
interacting with the world, whether or not they
intend to be interacting with your application.
Your challenge is to detect intended gestures
correctly and avoid detecting “false positive”
gestures. Keep in mind that users in a social
context may alternate between interacting with
the application and with other people beside
them or in the vicinity. The application must
be aware and considerate of the social context
of the users.

The Kinect for Windows SDK 2.0 provides a
built-in user engagement model. You can use
this model or create your own if you want your
user engagement detection to be more or less
strict than the built-in model.

Provide feedback to increase confidence.

Provide a clear and simple way for
people to engage and disengage.

Recognize unique and intentional
movement as gesture or interaction.

Ignore natural body movements
(scratching, sneezing, etc.).

Forget to provide feedback when a
gesture fails or is canceled.

Require users to modify natural
behavior to avoid interaction.

Miss, ignore, or don’t recognize the
user’s gesture.

Misinterpret natural body movements
as the proposed gesture.

Do Don’t

For more information, see the
Engagement and Feedback sections,
later in this document.

Part of determining user intent is recognizing when people want to first engage with the
application. It’s tricky because there’s no physical medium such as a mouse for detecting intent
with Kinect for Windows.

The Kinect for Windows SDK 2.0 provides a built-in user engagement model that is designed to
filter out the vmost common false engagements while also providing a low barrier to interacting
with the system. This is likely a good starting point and should be a good balance for most
applications. If your experience has unique requirements that require you to build your own
engagement model, it is recommended that you keep the following concepts in mind.

If the user must actively trigger engagement, be sure you demonstrate it at some point early in
the experience, or make the trigger clearly visible when it’s needed. Avoid long or cumbersome
engagement experiences, because they will become frustrating for returning users or users who
have already observed someone using the application.

Kinect for Windows | Human Interface Guidelines v2.0 31

Gesture > Gesture Interaction Design

Kiosk or other retail retail experiences that control the environment might simply look
for a user to step into an interactive zone identified on the floor of the installation.
This can also provide a very effective filter for removing other people that are simply
walking by.

Experiences with a high cost of false positive might want to increase the barrier, such as
leveraging the built-in feature and adding additional UX speedbumps (like pressing a
button to start), to further ensure user intent.

Raising your hand over your head is an extremely simple model that can be
implemented for scenarios that involve more than the two people that are supported by
the interactions platform in the Kinect for Windows SDK 2.0.

Alternative engagement models

Kinect for Windows | Human Interface Guidelines v2.0 32

Gesture > Gesture Interaction Design

Design for variability
of input
Users’ previous experience and expectations
affect how they interact with your application.
Keep in mind that one person might not perform
a gesture the same way as someone else.

Gesture interpretation

Simply “asking users to wave”
doesn’t guarantee the same
motion.

They might wave:

• From their wrist

• From their elbow

• With their whole arm

• With an open hand
 moving from left to right

• By moving their fingers
 up and down together

It’s hard to scan for a broad variety of interpretations; instead, it’s
best to give users clear tips about the exact gesture you require.

Kinect for Windows | Human Interface Guidelines v2.0 33

Gesture > Gesture Interaction Design

Make the gesture fit
the user ’s task
Logical gestures have meaning and they relate
to associated UI tasks or actions. The feedback
should relate to the user’s physical movement.

Make the action and feedback parallel –
for example, users swipe left to scroll left
or move content to the left.

Require users to move a hand up to
scroll content to the left.

Do Don’t

Use logical movements that are easy
to learn and remember.

Require abstract body movements that
have no relationship to the task and are
hard to learn and remember.

Make the size or scope of the motion
match the significance of the feedback
or action.

Require a big movement for a small
result, like a whole arm swipe to move
one item in a list.

Use big, easily distinguishable
movements for important and less
frequent actions.

Use big movements for actions that
must be repeated many times through
an experience.

Kinect for Windows | Human Interface Guidelines v2.0 34

Gesture > Gesture Interaction Design

Design for complete
gesture sets
The more gestures your application requires,
the harder it is to design a strong gesture
set. So, we recommend that you keep the
number of gestures small, both so that they’re
easy to learn and remember, and that they’re
distinct enough from one another to avoid
gesture collisions. In addition, if you strive to
be consistent with other applications, people
will feel at home with the gestures and you’ll
reduce the number of gestures they have to
learn. You’ll also reduce the training you have
to provide.

Here are a few things to remember when defining a gesture set:

• Make sure each gesture in an application’s gesture set feels related and cohesive.

• Keep your users’ cognitive load low; don’t overload them with gestures to remember.
 Research shows that people can remember a maximum of six gestures.

• Take cues from existing gestures that have been established in other Kinect applications.

• Test thoroughly for “false positive” triggers between gestures.

• Use obvious differentiators, such as direction and hand state, to make gestures
 significantly different, reduce false positives, and avoid overlap.

• Make sure similar tasks use the same gesture language, so that users can guess or
 discover gestures through logical inference or pairing. For example, pair a grab-and-drag
 right (to move content right) to a grab-and-drag left (to move content left).

IF: THEN:

Kinect for Windows | Human Interface Guidelines v2.0 35

Gesture > Gesture Interaction Design

Differentiate direction changes.

Differentiate progression or path.

Risk gesture overlap by making the
direction of two similar gestures
the same.

Have two gestures that follow the same
path, especially if they’re in the same
direction.

Have vague and similar start and end
points that result in different actions.

Do Don’t

Have clear and different start and
end points.

Kinect for Windows | Human Interface Guidelines v2.0 36

Think about the whole scenario. What does the user do after completing a gesture?
Might that action look like the start of an unintended gesture? Will it put them in a
natural position to begin the next logical gesture for your common scenarios?

Notes

Gesture > Gesture Interaction Design

Do Don’t

Define the conceptual opposite action
of a defined gesture as something other
than a pair or mirror of that gesture.

Design logically paired gestures to
be consistent and follow the same
gesture language.

Kinect for Windows | Human Interface Guidelines v2.0 37

Handle repeating
gestures gracefully
If users will need to perform a gesture
repeatedly (for example, moving through
pages of content), you might encounter a
few common challenges.

Gesture > Gesture Interaction Design

Design repeating gestures to be fluid,
without jarring starts and stops.

Enable users to quickly get into a
rhythm of movement.

Let feedback get in the way and hinder
or pace the user’s rhythm. For example,
people shouldn’t feel like they must
wait for an animation to finish before
they can repeat the gesture.

Design a gesture such that repetition is
inefficient.

Do Don’t

Consider the movement of the whole
repetition. Ignore the “return” portion
of a repeated gesture if it will disrupt
the ability of the user to repeat the
gesture smoothly.

Design the opposite gesture to resemble
the “return” portion of the first gesture.

Kinect for Windows | Human Interface Guidelines v2.0 38

Avoid “handed”
gestures
Handed gestures are ones that can be
done only with a specific hand. They
do not provide users with a truly natural
experience, are undiscoverable, and should
be avoided.

Allow users to switch hands to reduce
fatigue.

Accommodate both left and right-
handed people.

Design as if you, the developer or
designer, are the only user.

Require specifically handed gestures;
they’re not discoverable or accessible.

Do Don’t

Gesture > Gesture Interaction Design

Kinect for Windows | Human Interface Guidelines v2.0 39

Vary one-handed and
two-handed gestures
For variety and to accommodate natural
interaction, you can design for both single-
handed and two-handed gestures.

Gesture > Gesture Interaction Design

Use one-handed gestures for all
critical-path tasks. They’re efficient
and accessible, and easier than two-
handed gestures to discover, learn,
and remember.

Use two-handed gestures for noncritical
tasks (for example, zooming) or for
advanced users. Two-handed gestures
should be symmetrical because they’re
then easier to perform and remember.

Require the user to switch between
one- and two-handed gestures
indiscriminately.

Use two-handed gestures for critical,
frequent tasks.

Do Don’t

Kinect for Windows | Human Interface Guidelines v2.0 40

Remember that
fatigue undermines
gesture
Your user shouldn’t get tired because of
gesturing. Fatigue increases messiness, which
leads to poor performance and frustration,
and ultimately a bad user experience.

Gesture > Gesture Interaction Design

Offer gesture alternatives: for example,
in a list of items, use different gestures
to navigate in small or big steps, jump
within the list, zoom in or out, or filter
to shorten the list.

Require excessive repetition of a single
gesture, such as page grabbing-and-
dragging to get through a long list. (So,
avoid long lists or use a more appropriate
modality, such as voice search.)

Require users to assume uncomfortable
positions, such as holding their hand
above their head for a long time.

Do Don’t

natural movements awkward movementsgood gestures in between
(unique and purposeful)

For more information, see Multimodal
Interactions, later in this document.

Kinect for Windows | Human Interface Guidelines v2.0 41

Consider user
posture and
movement ranges
User posture might affect your gesture design,
so consider where and how your users will use
your application. For example, sitting limits a
person’s possible movements.

Design a single gesture that works well
across all viable postures.

Be aware of the loss of reliability if
you view a user from the side. Joints
that are not in full view are placed in
predicted locations by the skeleton
tracking and aren’t always in the
correct position.

Require users to stand at distances or
orientations where skeleton tracking
will be less reliable. Examples include
users oriented sideways to the sensor,
blocked by objects (such as a table),
out of visible range of the sensor, etc.

Keep in mind the normal and
comfortable ranges of interaction for
the human body.

Design alternate gestures for the same
command, such as different gestures
for seated and full skeleton mode.

Do Don’t

Design one gesture that works well in
one posture but poorly in another.

Gesture > Gesture Interaction Design

Kinect for Windows | Human Interface Guidelines v2.0 42

Teach gestures
and enable
discoverability
Whenever a gesture is available to interact
with your application, you should find a way
to communicate it to your user. Here are
some options.

Teaching methods

• A quick tutorial for
 new users

• An indication of gesture
 state throughout the
 interaction

• A visual cue or hint when
 a user first engages

• A static image

• An animation

• A message or notification

Gesture > Gesture Interaction Design

How to
gesture

Hello!

Wave to engage

Kinect for Windows | Human Interface Guidelines v2.0 43

Be aware of
technical barriers
If you’re using skeleton data to define your
gestures, you’ll have greater flexibility, but
some limitations as well.

Tracking movement

Keeping arms and hands to
the side of the body when
performing gestures makes
them easier to track, whereas
hand movements in front of
the body can be unreliable.

Field of view

Make sure the sensor tilt and
location, and your gesture
design, avoid situations where
the sensor can’t see parts of a
gesture, such as users extending
a hand above their head.

Tracking reliability

Skeleton tracking is most
stable when the user faces
the sensor.

Gesture > Gesture Interaction Design

Tracking speed

For very fast gestures,
consider skeleton tracking
speed and frames-per-second
limitations. The fastest that
Kinect for Windows can track
is at 30 frames per second.

Kinect for Windows | Human Interface Guidelines v2.0 44

Remember your
audience
Regardless of how you define your gestures,
keep your target audience in mind so that
the gestures work for the height ranges
and physical and cognitive abilities of your
users. Think about the whole distance
range that your users can be in, angles that
people might pose at, and various height
ranges that you want to support. Conduct
frequent usability tests and be sure to test
across the full range of intended user types.

Gesture > Gesture Interaction Design

Physical differences

For example, you should
account for users of various
heights and limb lengths.
Young people also make,
for example, very different
movements than adults when
performing the same action,
due to differences in their
dexterity and control.

Kinect for Windows | Human Interface Guidelines v2.0 45

Iterate
Finally, getting a gesture to feel just right
might take many tweaks and iterations.
Create parameters for anything you can,
and (we can’t say it enough) conduct
frequent usability tests.

Gesture > Gesture Interaction Design

Design a gesture that works reliably
for your whole range of users.

Design a natural and discoverable
gesture.

Design a gesture that works for you
but no one else.

Build your application to be inflexible,
so it is hard to make adjustments.

Do Don’t

Kinect for Windows | Human Interface Guidelines v2.0 46

Voice
Besides gesture, voice is another input
method that enables new and natural-feeling
experiences.

Voice

46Kinect for Windows | Human Interface Guidelines v1.8

Kinect for Windows | Human Interface Guidelines v2.0 47

Basics
Using voice in your Kinect for Windows–
enabled application allows you to choose
specific words or phrases to listen for and
use as triggers. Words or phrases spoken as
commands aren’t conversational and might not
seem like a natural way to interact, but when
voice input is designed and integrated well, it
can make experiences feel fast and increase
your confidence in the user’s intent.

Voice > Basics

Kinect for Windows | Human Interface Guidelines v2.0 48

About confidence
levels
When you use Kinect for Windows voice-
recognition APIs to listen for specific words,
confidence values are returned for each
word while your application is listening. You
can tune the confidence level at which you
will accept that the sound matches one of
your defined commands.

Voice > Basics

• Try to strike a balance between reducing false positive recognitions
 and making it difficult for users to say the command clearly enough to
 be recognized.

• Match the confidence level to the severity of the command. For
 example, “Purchase now” should probably require higher confidence
 than “Previous” or “Next.”

• It is really important to try this out in the environment where your
 application will be running, to make sure it works as expected.
 Seemingly small changes in ambient noise can make a big difference
 in reliability.

Kinect for Windows | Human Interface Guidelines v2.0 49

Keyword/trigger

The sensor only listens for
a single keyword. When it
hears that word, it listens
for additional specified
words or phrases. This is
the best way to reduce false
activations. The keyword
you choose should be very
distinct so that it isn’t easily
misinterpreted. For example,
on Xbox360, “Xbox” is the
keyword. Not many words
sound like “Xbox,” so it’s a
well-chosen keyword.

Listening models
There are two main listening models for
using voice with Kinect for Windows: using
a keyword or trigger, and “active listening.”

Always on,
active listening

The sensor is always listening
for all of your defined words
or phrases. This works fine
if you have a very small
number of distinct words or
phrases – but the more you
have, the more likely it is that
you’ll have false activations.
This also depends on how
much you expect the user
to be speaking while the
application is running, which
will most likely depend on
the specific environment
and scenario.

Voice > Basics

Kinect!

Home

Home

Kinect for Windows | Human Interface Guidelines v2.0 50

Choose words and
phrases carefully
When choosing what words or phrases to
use, keep the following in mind. (If each
screen has its own set of phrases, these
guidelines apply within a set; if the whole
application uses one set of phrases, the
guidelines apply to the whole application.)

Distinct sounds

Avoid alliteration, words
that rhyme, common
syllable lengths, common
vowel sounds, and using
the same words in different
phrases.

Brevity

Keep phrases short (1-5
words).

Word length

Be wary of one-syllable
keywords, because they’re
more likely to overlap with
others.

Simple vocabulary

Use common words where
possible for a more natural
feeling experience and for
easier memorization.

Voice > Basics

SHOW ME THE ONE
ON THE LEFT

PUT THIS ONE IN THE
SHOPPING CART

SHOW THE LEFT ONE

PUT IN CART

Don’t

Alliteration
Same words in
different phrasesRhymes

Vowels in
Common

Syllables in
Common

CAT
KIT
KEY

MAKE
TAKE
PAIR
PEAR

SOMETHING
SOMEONE
INCREASE
DECREASE

MAIN
TAKE
DATE
FACE

ONE MORE TIME
SHOW ME MORE
PLAY MORE LIKE THIS
MORE RED

Do

PLAY
STOP
MORE
SCROLL
BACK

PLAY THIS ONE
STOP VIDEO
SHOW MORE SONGS
SCROLL RIGHT
GO BACK

Don’tDo

MAX OUT
CRIMSON
INITIAL

TURN UP
RED
FIRST

Don’tDo

Don’t

Kinect for Windows | Human Interface Guidelines v2.0 51

Minimal voice prompts

Keep the number of phrases
or words per screen small
(3-6).

Word alternatives

User prompts

If you have even more items
that need to be voice-
accessible, or for non-text
based content, consider
using numbers to map to
choices on a screen, as in
this example.

For commands recognized
with low confidence, help
course correct by providing
prompts – for example, “Did
you mean ‘camera’?”

Voice > Basics

Go home, Go back,
Next page, Previous page

1 2 3
camera 2

Did you mean “camera”?
camrwoj

Kinect for Windows | Human Interface Guidelines v2.0 52

Reduced false activation

Test and be flexible. If a
specific word always fails
or is falsely recognized, try
to think of a new way to
describe it.

Acoustics

Test your words and
phrases in an acoustic
environment similar to
where you intend your
application to be used.

Voice > Basics

Confidence level threshold

VS

Test Test

Triggering audio

Try using a trigger or event
to make Kinect for Windows
start listening. For example,
only listen when a skeleton is
detected in a certain area.

You can require higher confidence levels (80% to 95%) – that is, having
Kinect for Windows respond only when it’s certain that the user has given
the correct trigger. This might make it harder to users to interact, but
reduce unintentional actions.

Kinect for Windows | Human Interface Guidelines v2.0 53

Voice Interaction
Design
Generally, it’s best to avoid forcing people to
memorize phrases or discover them on their
own. Here are a few best practices for helping
users understand that they can use voice, and
learn what words or phrases are available.

Voice > Voice Interaction Design

Kinect for Windows | Human Interface Guidelines v2.0 54

Visual voice prompts

Display exactly how users
must say voice commands.

Listening mode

Indicate visually that the
application is “listening”
for commands. For
example, Xbox One uses a
microphone icon.

User assistance

Display keywords onscreen,
or take users through a
beginning tutorial.

“Show me the next one”
“Show me the next 20”

First say “Kinect”,
then say “Home” or “Next”

Voice > Voice Interaction Design

Kinect for Windows | Human Interface Guidelines v2.0 55

Voice > Voice Interaction Design

Visual notifications

If there is an issue with the
microphone connection,
display an error icon and/
or message so the user can
address the problem.

Audio prompting

If for some reason the user
might not be facing the
screen, have an option for
Kinect for Windows to read
the available phrases out loud.

Alternative input

Voice shouldn’t be the only
method by which a user can
interact with the application.
Build in allowances for
the person to use another
input method in case voice
isn’t working or becomes
unreliable.

Microphone is not detecting
audio, please check connection!

IF: THEN:

The quick brown
fox jumped over
the lazy dog

Kinect for Windows | Human Interface Guidelines v2.0 56

VUI (voice user interface) bars and labels

As seen in Xbox One interfaces, VUI bars and labels are a great way to indicate what commands are
available, especially if you’re using a keyword. On Xbox One, the user says the keyword (“Xbox”),
and then the VUI bar appears, containing phrases that he or she can choose from. This is a good
way of clearly indicating what phrases are available, without having them always present on the
screen.

See it, say it model

The “see it, say it” model is one where the available phrases are defined by the text on the screen.
This means that a user could potentially read any UI text and have it trigger a reaction. A variation
of this is to have a specified text differentiator, such as size, underline, or a symbol, that indicates
that the word can be used as a spoken command. If you do that, you should use iconography
or a tutorial in the beginning of the experience to inform the user that the option is available,
and teach them what it means. Either way, there should be a clear, visual separation between
actionable text on a screen and static text.

Voice > Voice Interaction Design

You can say:
“Home”, “Next”, “Back”

Kinect

When mic icon is blue,
you can say words in blue.

Lorem ipsum dolor sit amet,
consectetur adipisiciing elit,
sed do eiusmod tempor
incididunt ut labore et dolore
magna al qua.

Kinect for Windows | Human Interface Guidelines v2.0 57

Voice > Voice Interaction Design

Choose the right
environment
for voice
There are a few environmental
considerations that will have a significant
effect on whether or not you can
successfully use voice in your application.

Ambient noise

The sensor focuses on the loudest sound source and attempts to cancel out other ambient
noise (up to around 20dB). This means that if there’s other conversation in the room (usually
around 60-65dB), the accuracy of your speech recognition is reduced.

Amplify that to the sound level of a mall or cafeteria and you can imagine how much harder it
is to recognize even simple commands in such an environment. At some level, ambient noise is
unavoidable, but if your application will run in a loud environment, voice might not be the best
interaction choice. Ideally, you should only use voice if:

• The environment is quiet and relatively
 closed off.

• There won’t be multiple people speaking
 at once.

60-65dB =

Kinect for Windows | Human Interface Guidelines v2.0 58

Voice > Voice Interaction Design

System noises and cancellation

Although the sensor is capable of more complex noise cancellation if you want to build that
support, the built-in functionality only cancels out monophonic sounds, such as a system beep, but
not stereophonic. This means that even if you know that your application will be playing a specific
song, or that the song will be playing in the room, Kinect for Windows cannot cancel it out, but if
you’re using monophonic beeps to communicate something to your user, those can be cancelled.

Distance of users to the sensor

When users are extremely close to the sensor, the sound level of their voice is high. However,
as they move away, the level quickly drops off and becomes hard for the sensor to hear, which
could result in unreliable recognition or require users to speak significantly louder.

Ambient noise also plays a role in making it harder for the sensor to hear someone as they
get farther away. You might have to make adjustments to find a “sweet spot” for your given
environment and setup, where a voice of normal volume can be picked up reliably.

In an environment with low ambient noise and soft PC sounds, a user should be able to
comfortably speak at normal to low voice levels (49-55dB) at both near and far distances.

Distance of user to Kinect

Au
di

o
le

ve
l d

et
ec

te
d

Kinect for Windows | Human Interface Guidelines v2.0 59

Voice > Voice Interaction Design

Social considerations

Keep in mind the social implications of your users needing to say commands loudly while using
your application. Make sure that the commands are appropriate for the environment, so you
don’t force your users to say things that will make them uncomfortable. Also make sure that
the volume at which they have to speak is appropriate for the environment. For example,
speaking loud commands in a cubicle-based office setup might be distracting and inappropriate.

Kinect for Windows | Human Interface Guidelines v2.0 60

Feedback
Whether you employ gesture, voice, or
both, providing good feedback is critical
to making users feel in control and helping
them understand what’s happening in the
application. This section covers some ways you
can make feedback as strong as possible.

Feedback

60Kinect for Windows | Human Interface Guidelines v1.8

Kinect for Windows | Human Interface Guidelines v2.0 61

Basics
It’s important, especially if your users are
standing at a distance and have little direct
contact with the interface, to take extra care
in showing them how their actions map to
your application. Also, because a gesture is
only effective and reliable when users are
in the correct visibility range, it’s important
to give feedback to them in case they don’t
know when they’re out of range.

Feedback > Basics

Kinect for Windows | Human Interface Guidelines v2.0 62

Consider what users
want to know
As you design, imagine you’re a first-time user,
and ask yourself these questions.

Feedback > Basics

• What does the sensor see?

• Where’s the field of view?

• How much of me can the sensor see?

• Is my head in view?

For more information, see Engagement,
later in this document. • Is the sensor on and ready? • Am I in control?

• Can I engage now?

Kinect for Windows | Human Interface Guidelines v2.0 63

Feedback > Basics

Many of these questions can be answered by displaying a small User Viewer (visualizing
depth) on the screen to show what Kinect for Windows sees at any given time.

Highlighting players, hands, or other joints in the depth viewer might also be helpful.

You can also prompt people to move into the appropriate field of view whenever they’re
cropped, too close, or too far back.

Notes

• How many people can the sensor see?

• How do I know it’s seeing me and not
 someone else?

• When and where can I gesture?

Kinect for Windows | Human Interface Guidelines v2.0 64

Feedback
Interaction
Design
This section gives tips for designing various
kinds of feedback, including selection states,
progress indicators, and other visuals, as well
as audio feedback.

Feedback > Feedback Interaction Design

Kinect for Windows | Human Interface Guidelines v2.0 65

Feedback > Feedback Interaction Design

Input suggestions

Use iconography or
tutorials to show users
what input methods are
available to them.

Gesture suggestions

Show what gestures are
available.

Best practices
There are several best practices that apply
whether you’re designing for gesture or voice.

Make it clear what content the user can take action on, and how

Differentiated controls

Use iconography, colors, or
tutorials to show users how
to differentiate between
controls they can activate,
text prompts for voice input,
and other text and content.

Lorem ipsum dolorLorem

Lorem
ipsum dolor
sit amet,
consectetur
adipiscing

BUTTON LINK NORMAL TEXT

Visual feedback

Show cursor visuals if you’re
tracking a user’s hand.

For more information, see Targeting
and Selecting, later in this document.

Press to select

Kinect for Windows | Human Interface Guidelines v2.0 66

Feedback > Feedback Interaction Design

Audio notifications

If there’s no Kinect for
Windows Sensor available
(for example, a hardware or
a connection issue), show
an error message and a
suggestion for how to fix it.
Display some change in the
visuals. Consider whether
you should recommend that
the user switch to alternative
input methods.

Command suggestions

Show what commands users
can speak.

You can say:
“Home”, “Next”, “Back”

Microphone is not detecting
audio, please check connection!

Kinect for Windows | Human Interface Guidelines v2.0 67

Targeting and selection

Provide feedback about what
items users can take action
on, what state those items
are currently in, and how to
take action on them.

Feedback > Feedback Interaction Design

Progress feedback

When a user controls
something by direct
manipulation, show the
progress in a way that
translates to the person’s
motion.

Map feedback to gesture

Clarify selection states

For example, if the user turns a page by a gesture, show the page pulling
up and turning over as his or her hand moves horizontally.

For example, for targeting and selecting, with a gesture that requires
Z-axis movement, using size changes to show depth helps users
understand the action required (see Kinect Button, later in this
document).

Kinect for Windows | Human Interface Guidelines v2.0 68

Selection confirmation

Whether the user triggers
an item by voice or gesture,
have a visual indication of
recognition before changing
the state of the application.

Feedback > Feedback Interaction Design

UI controls

For controls that are not for
navigation, such as check
boxes and toggle buttons,
have clear visual changes
that show state changes.

resting hover selected

Lorem ipsum

Kinect for Windows | Human Interface Guidelines v2.0 69

Feedback > Feedback Interaction Design

Ergonomics

Be careful when designing
the timeout length for
progress indicators in case
users might be required to
hold a position. Also consider
how frequently users will be
repeating the interaction.
Avoid forcing users to wait
unnecessarily.

Clear visuals

If you’re using a progress
timer, or a countdown, use
clear visuals to show the
entire progression.

If you are visualizing the user’s
progress in completing a task,
make sure the visual is clear,
prominent, and placed where
the user is focused.

Use progress indicators

Hold pose for
4 seconds

Kinect for Windows | Human Interface Guidelines v2.0 70

User orientation

If the UI changes based on
something (such as distance)
that the user might have
triggered inadvertently, try
animation to show where
the content is located in the
new layout.

Feedback > Feedback Interaction Design

Layout continuity

If the user is navigating, use
animation to help him or her
understand the layout.

Keep context by animating

For example, horizontal animation can show that the user has moved
horizontally in space in your application’s layout.

Kinect for Windows | Human Interface Guidelines v2.0 71

Feedback > Feedback Interaction Design

Use skeleton tracking
feedback
Full-body skeleton tracking provides a wide
range of new application possibilities. You can
use feedback both to lead and confirm the
user’s movements.

The User Viewer

Another way to do this is to
show a small scene viewer
or visualization to show the
user exactly what Kinect
for Windows can see at any
given time. This can help
users understand how to stay
within the right range and,
when they’re outside of it,
why things aren’t working.
(For more information, see
The User Viewer, later in this
document.)

Make sure users know whether the sensor sees them

User resets

If you need to track a user
but the sensor cannot see
them, let the user know
where to stand so that it can.

If you lose track of a user in
the middle of a process, pause
the process and guide the
user back to a place where
you can track him or her. For example, in Kinect Sports Rivals, the game tells users

they’re getting too close and shows them where to stand
for optimal tracking.

For more user-tracking feedback
information, see Engagement, later in
this document.

Please move left

Kinect for Windows | Human Interface Guidelines v2.0 72

Feedback > Feedback Interaction Design

Training and feedback

If you want users to copy a
specific movement or action,
you can show an avatar or
animation, either before you
expect to track the users’
movement, or even during
the movement.

If you show an animation
during the user’s movement,
visually indicate whether
or not the user is doing it
correctly.

Lead by example

An example of this is in Xbox Dance Central 3, where the onscreen
dancer moves correctly and independently of the user, but limbs get
highlighted in red if the user makes a mistake.

Kinect for Windows | Human Interface Guidelines v2.0 73

Feedback > Feedback Interaction Design

Realistic reactions

Make other objects in the
scene react correctly to
collisions with the skeleton/
avatar.

Smooth movements

Apply smoothing techniques to
skeleton-tracking data to avoid
motion and poses that are jittery
or not human-like.

Real-time movements

Make sure the movement
is in real time so the person
feels in control.

Mirror users’ actions

Kinect for Windows | Human Interface Guidelines v2.0 74

Use audio feedback
Audio feedback can be very effective, and has
its own set of considerations.

Feedback > Feedback Interaction Design

Teaching cues

You can use sound patterns
or cues to communicate a
simple message or teach
users when to pay attention.

Warning sounds

Audio can be a good way
to get users’ attention if
they need to be notified of
something – for example,
audio warnings or alerts. Microphone is not detecting

audio, please check connection!

Kinect for Windows | Human Interface Guidelines v2.0 75

Feedback > Feedback Interaction Design

Activity signals

Sounds can be a good way
to signal to a user that
something has changed or
has been selected.

Click

Announce selection states

Consider using sounds that match the action the user is taking, to
enforce his or her feeling of control and familiarity – for example,
a click noise when a button is pressed.

Instructional audio

If the user isn’t facing
the screen, or is far away,
consider using audio as a
way to communicate to him
or her – for example, giving
available options, directions
or instructions, or alerts.

Base audio feedback on user orientation

You can play the
next song by
saying “next”

Kinect for Windows | Human Interface Guidelines v2.0 76

Feedback > Feedback Interaction Design

Combine feedback
In the physical world, we use all of our senses
to gauge whether our actions are effective
and in order to communicate naturally with
others. Similarly, combining different types of
feedback often makes for a better experience
in a virtual world.

Reinforced feedback

Combining visual and audio
inputs can make feedback
stronger.

A great example of this is pressing buttons with Kinect. As the user
presses outward, and retracts to complete the action, the following
changes happen:

• The hand cursor fills

• Once the full extent is reached an animation plays as well as a
 sound.

• Once the user releases the cursor is updated and another sound
 plays to confirm selection

The result seems like a very “hands-on” experience, where the user
can almost feel the effects of his or her movements.

Kinect for Windows | Human Interface Guidelines v2.0 77

Basic Interactions
Although we leave it up to you to create
exciting and unique experiences with Kinect for
Windows, we’ve taken care of some of the basic
interactions and controls for you and included
them in the Developer Toolkit. Using our
interactions and controls saves you time and
also establishes some consistency that your users
will learn to expect as they encounter Kinect for
Windows experiences in various aspects of their
daily lives. We’ve spent a lot of time tuning and
testing this first set of interactions to give you
the best foundation possible, and we’ll add more
in our future releases.

The following sections help you set the stage for
your application, and show you how to enable
users to easily engage with it, target and select
items, and scroll or pan. We also call out some
examples that you’ll find in the Interaction
Gallery, and share some tips for interactions that
we don’t provide for you.

Basic Interactions

77Kinect for Windows | Human Interface Guidelines v1.8

Kinect for Windows | Human Interface Guidelines v2.0 78

Basic Interactions > Best Setup for Controls and Interactions

Best Setup for
Controls and
Interactions
We’ve worked hard to provide great controls
and interactions, but to make them as reliable as
possible, we recommend this setup:

• Optimally your users should be standing
 between 1.5m and 2m away from the sensor.

• The sensor should be placed above or below
 the screen, wherever it has the least amount
 of tilt and can see the most of your users’ bodies.
 It helps a lot if it can see your users’ heads.

• The sensor should be centered on the screen
 so that users can stand directly in front of it.

• There should not be large amounts of natural
 light, or people walking in front of your users.

For information about button controls,
see Kinect Button, later in this
document.

Kinect for Windows | Human Interface Guidelines v2.0 79

Basic Interactions > Best Setup for Controls and Interactions

Screen resolution

The Kinect for Windows controls we’ve built were designed for 1920x1080 resolution screens.
Whether you’re using these controls or creating your own, keep in mind that different screen
resolutions affect the intended size of the control. Also, because the Physical Interaction Zone
(or PHIZ, described in the following section) has a fixed size relative to the person, and doesn’t
adjust for the screen size or orientation, it might be helpful as you resize your controls to focus
on fine-tuning the ratio of control size to PHIZ size, to ensure that the experience is still reliable
and the control is still easily selectable.

The smallest button we’ve designed is 208 by 208px in 1920x1080 resolution. We’ve tested to
ensure that this button size and resolution combination makes it possible to have close to 100
percent accuracy for most users. If you have a different resolution, however, you need to resize
the button to make sure the ratio is maintained, to keep the reliability. The following chart
shows how this small button size translates for different resolutions.

UHDTV

(W)QHD

1080p

WSXGA+

HD+

WXGA+

WXGA

720p

XGA

SD

HVGA

Kinect Region (px) Button (px)

Width Height Width/Height

7680

2560

1920

1680

1600

1440

1366

1280

1024

720

480

4320

1440

1080

1050

900

900

768

720

768

480

320

832

278

208

202

174

174

148

139

148

93

62

Kinect for Windows | Human Interface Guidelines v2.0 80

Basic Interactions > Setting the Stage: the Kinect Region, the PHIZ, and the Cursor

Setting the
Stage: the Kinect
Region, the
PHIZ, and the
Cursor
The Kinect Region, the Physical Interaction
Zone (PHIZ), and the cursor are all things
that you need to get started with your Kinect
for Windows–enabled interface. You can
easily set them up so they’ll work the best
for your scenario.

Kinect for Windows | Human Interface Guidelines v2.0 81

The Kinect Region
The Kinect Region is the area on the screen
where Kinect for Windows–enabled interactions
are possible in your application. That means
it’s also the only area where your Kinect for
Windows cursor will appear. As you plan and
design your application, consider where and
how big you want this area to be, how itwill
affect the user experience, and how it will fit
within the orientation of your screen (landscape
or portrait).

Basic Interactions > Setting the Stage: the Kinect Region, the PHIZ, and the Cursor

Full window

In some applications, the
Kinect Region is the entire
window; when the sample
is maximized, which it
is by default, that’s the
entire screen. This method
is the least jarring and
confusing for users because
it most directly translates
to the expected behavior
of cursor areas that they’ve
experienced before.

Kinect for Windows | Human Interface Guidelines v2.0 82

The Physical
Interaction Zone

The PHIZ aims to:

• Provide a consistent experience that
 users can learn quickly, across all Kinect for
 Windows–enabled applications.

• Enable users to comfortably reach everything
 they need to interact with.

• Provide responsive tracking (low latency).

Basic Interactions > Setting the Stage: the Kinect Region, the PHIZ, and the Cursor

Area

The area of the PHIZ is relative
to the size and location of
the user, and which hand he
or she is using. It spans from
approximately the user’s head to
the navel and is centered slightly
to the side corresponding to the
hand the user is actively using to
interact. Each hand has its own
separate PHIZ.

Shape

Instead of mapping directly
from a flat, rectangular area
that has the same shape as
the screen, we take the range
of movement of human
arms into account and use
a curved surface, which
makes moving and extending
the arm within the area
comfortable and natural.

Axis

We measure X and Y
dimensions as if the curved
surface were a rectangle. We
measure Z by arm extension,
because we’ve found that
this is not always the same
as Z space between the user
and the sensor.

Kinect for Windows | Human Interface Guidelines v2.0 83

Basic Interactions > Setting the Stage: the Kinect Region, the PHIZ, and the Cursor

Ergonomics

The PHIZ stays the same
shape and size relative to
the user, regardless of the
aspect ratio of the Kinect
Region (for example, portrait
vs. landscape), to keep users
in a space where movement
is comfortable and not
fatiguing. This means that
users will always be able to
comfortably interact with
all parts of your application;
however, keep in mind that
the thinner and longer your
Kinect Region is, the harder
it will be for your users to
target precisely.

For example, if your screen is extremely tall and narrow, users will have
to move their hands much farther to move left and right, and moving
up and down will seem extremely fast.

Kinect for Windows | Human Interface Guidelines v2.0 84

Portrait Screen
Interactions
A large screen in portrait orientation is well
suited to individual interactions. The entire
screen can present a single user-centric
interaction surface. The user can interact with
the screen in the same way he or she might
with a dressing-room mirror.

Basic Interactions > Setting the Stage: the Kinect Region, the PHIZ, and the Cursor

Portrait screen design

Even though a single user can easily fit into the frame, it can be a challenge to design an
experience that involves movement spanning the entire vertical range of the portrait screen.
Mapping the PHIZ to the portrait screen will affect the cursor interaction. Moving the cursor
left and right seems slower. Moving the cursor up and down seems more rapid, and makes fine-
grained control more difficult.

UI placement

Place the controls within
easy reach of the user, for
example, near the center of
the PHIZ.

Place interaction points away
from the margins of the
screen and toward the center
so that a user can easily use
either hand.

Kinect for Windows | Human Interface Guidelines v2.0 85

Basic Interactions > Setting the Stage: the Kinect Region, the PHIZ, and the Cursor

User considerations

Avoid long interactions that
require the user to keep his-
or-her hands raised for more
than a few seconds, such as a
vertical scroll.

Avoid fine-grained
vertical motions in your UI
interactions. Fined-grained
targeting along the vertical
axis will cause fatigue in
users.

Kinect for Windows | Human Interface Guidelines v2.0 86

Basic Interactions > Setting the Stage: the Kinect Region, the PHIZ, and the Cursor

Variations in user height

Portrait screens should account for users of various heights. The UI elements will either need
to be designed to accommodate an average user height or should use Adaptive UI design to
target individual users. As we mention in Remember your audience earlier in this document,
keep your audience in mind.

Consider sensor placement and limitations

If the sensor is placed at the bottom or the top of the portrait screen, it may have difficulty
tracking the user at a steep angle. The sensor will see the user’s skeleton and gestures from an
angle and if the user is very close to the display, the skeleton may be clipped. A sensor placed
at the top of the screen may have difficulty recognizing a short user who is standing close to
the screen. As we mentioned in Consider Sensor Placement and Environment earlier in this
document, the best practice is to anticipate these limitations and to test the interactions.

Kinect for Windows | Human Interface Guidelines v2.0 87

The Kinect for
Windows Cursor
Much like a mouse cursor, the Kinect for
Windows cursor provides visual cues to your
users as they target, select, and scroll or pan by
moving their hand in the PHIZ.

Although we’ve built a lot of feedback into our
controls and we suggest you do the same for
any new ones you build, we’ve made the cursor
a strong mechanism for providing feedback.

Basic Interactions > Setting the Stage: the Kinect Region, the PHIZ, and the Cursor

Pressing

As a user extends his or her arm in a pressing motion, a color fill goes up and down within the
cursor to indicate how far along in the press the user is. This feature was heavily user-tested
and has shown to improve pressing accuracy and learnability. It also makes it easier for users to
cancel before a press is made, or retarget if a press is about to happen over the wrong control.
The cursor also has a visual state that indicates when the user has completed a press.

Gripping

When Kinect for Windows detects that the user’s hand is in a gripped state, the cursor changes
to a gripped visual and shows a color consistent with the fully pressed state. This confirms
to the user that the grip is detected, as well as being a strong visual cue for how to make a
recognizable gripped hand.

Default
targeting
state

Gripped hand
detected

Fully pressed
state (there is
an animation,
outside the
hand, at this
point)

Right hand vs. left
hand cursors

Standard cursor and feedback graphics

Progress
indication
(color fills
hand as the
user presses
further)

Kinect for Windows | Human Interface Guidelines v2.0 88

Basic Interactions > Setting the Stage: the Kinect Region, the PHIZ, and the Cursor

The cursor moves freely within the Kinect Region only when the user’s hand is in the PHIZ; if
the user’s hand is anywhere above and to the sides of the PHIZ, the cursor sticks to the top, left,
or right of the window. This provides feedback for how to get back into the area where the user
can interact. When the user’s hand falls below the PHIZ, the cursor drops off the bottom of the
screen and is no longer visible, allowing the user to rest or disengage.

Because we’ve built only one-handed interactions (see Vary one-handed and two-handed
gestures, earlier in this document), by default we show only one cursor for one user at any
given time. This cursor is determined by the hand of the person who engages first (see the
following section, Engagement). The engaged user can switch hands at any time by dropping
one hand and raising the other.

Kinect for Windows | Human Interface Guidelines v2.0 89

Basic Interactions > Engagement

Engagement
With most human-computer interactions, it’s
easy to know when users mean to interact with
the computer, because they deliberately move
the mouse, touch the keyboard, or touch the
screen. With Kinect for Windows, it’s harder
to distinguish between deliberate intent to
engage and mere natural movement in front
of the sensor. The Kinect for Windows SDK
2.0 provides a built-in engagement model
that your app can use to determine user
engagement. If your specific scenario has
special requirements for more strict or less
strict engagement detection, you are free to
implement your own model.

This section describes the default behavior and
the User Viewer control, covers some things to
think about as you design for engagement, and
explains the solution we’ve implemented in the
Interaction Gallery sample.

Kinect for Windows | Human Interface Guidelines v2.0 90

Basic Interactions > Engagement

Default engagement
behavior
The Kinect for Windows interaction model considers
a person as an engaged user if they are in control
of the application. An engaged user is tracked as a
pairing of a tracked body with a tracked hand.

There are two modes for engagement tracking -
system and manual. With system engagement, the
system dynamically determines which one or two
users are currently engaged and then informs the
application which body/hand pairs represent the
engaged user or users.

With manual engagement, the application uses
its own logic to determine which body/hand pair
represent the engaged user or users and notifies the
system that either one or two of these pairing should
be treated as engaged users.

Kinect for Windows | Human Interface Guidelines v2.0 91

Colors

• Color for the primary (engaged) user

• Color for any other users who are detected but not tracked

We’ve chosen some generic colors as default for this control, but you can set them to
whatever’s appropriate for your design and brand.

The User Viewer helps to answer the following engagement
questions for your users:

• Can the sensor see me?

• Is any part of my body clipped? Is my hand still in view?

• Am I the primary user in control of the experience right now?

• Is it possible for me to take over control of the application?

• Someone just walked in between me and the sensor: am I still tracked?

• Is the person behind me or next to me confusing the sensor and making my cursor jumpy?

The User Viewer
We’ve built the User Viewer control to
help make engagement easier for users to
understand. It’s a simple view that shows
silhouettes for any user tracked by the
sensor and allows developers to set colors
for any visible players. By default, it uses two
colors to distinguish between the primary
user and others.

Basic Interactions > Engagement

Kinect for Windows | Human Interface Guidelines v2.0 92

Basic Interactions > Engagement

Including the User Viewer in your application helps your users understand how to place
themselves at the right distance and orientation for the sensor to see them. It also reduces any
feeling that the application or Kinect for Windows is buggy, unresponsive, or unexplainably
jumpy, and helps users figure out what is happening and how to make their experience better.
As mentioned above, this feedback is especially important in Kinect for Windows interactions,
because users moving freely in space will quickly feel a frustrating lack of control if the system
does not behave as they expected. For more information, see Feedback, earlier in this document.

You can size and place the User Viewer anywhere in your user interface.

In the Interaction Gallery sample, we use the user viewer in two different ways:

A full-screen overlay on the
Attract view

The purpose of the Attract view is to show
users that we can see them, and entice them
to interact with the application. The large
User Viewer helps to get this message across
and serves as an interesting visualization.

Small and centered at the top
on all other screens

This visually cues users to what the sensor
sees, who the engaged user is, and how to take
over engagement. We also use the small User
Viewer as a launching point for application
messaging and user education, and replace it
with the Sensor Chooser UI if there is a Kinect
for Windows connectivity error.

Kinect for Windows | Human Interface Guidelines v2.0 93

Considerations
for designing
engagement
It’s important that when a user is ready to
interact with your application, they can do
so easily.

Basic Interactions > Engagement

The top engagement interaction challenges are to ensure that:

• Users who want to engage, can.

• Users who aren’t trying to engage, don’t.

• Engaging feels natural and intuitive.

• Engaging doesn’t feel like significant additional effort.

Kinect for Windows | Human Interface Guidelines v2.0 94

Ease of engagement
When considering how to design your
application’s engagement strategy, consider how
and where you expect your users to interact
with it. In some scenarios, it should be harder for
users to engage.

The Kinect for Windows SDK 2.0 provides a built-
in engagement model that determines when a
user is engaged. If your scenario requires more
strict or less strict user engagement detection
than the built-in model provides, you can
implement your own.

Basic Interactions > Engagement

Quick, easy engagement

If you’re not concerned about false positives,
a “low barrier” solution might simply look
for a tracked user’s hand entering the PHIZ
(being interactive), such as our default
behavior does. For example, this might be a
good method for a simple interactive sign.

Deliberate, safe engagement

A “high barrier” solution could build on
top of a low barrier, looking for additional
factors in order to remove false positives. For
example, you might want this when data or
consequences are more critical.

With the high-barrier solution, after the low-barrier criteria are met, hinting could show
what else is required to complete engagement.

You might trigger engagement when the user:

• Faces the screen

• Raises a hand into the engagement area

• Is in front of the sensor and remains stationary for a short time
 (less than 500 milliseconds)

Notes

Kinect for Windows | Human Interface Guidelines v2.0 95

Common false
positives for
engagement
Your challenge is to design actions that
feel easy to the user, but also don’t risk
false positives.

Here are some common user behaviors that can
potentially be misinterpreted:

• Holding something (such as a drink or mobile phone)

• Moving a hand toward the body or resting it on the body

• Touching the face or hair

• Resting an arm on the back of a chair

• Yawning and extending arms

• Talking and gesturing with other people

Basic Interactions > Engagement

Kinect for Windows | Human Interface Guidelines v2.0 96

Basic Interactions > Engagement

Initial engagement
In the Interaction Gallery sample, we
demonstrate an example of a more
complicated engagement model that has a
“speed bump” for initial engagement and
then allows deliberate engagement handoff
between users.

Here is how the engagement flow works:

• The application starts in Attract view, which cycles through images,
 enticing users to come and interact.

• As users who walk by are detected, they appear as gray silhouettes in
 a full-screen overlay on the Attract view.

• When a user pauses and faces the sensor, her player mask turns
 purple and she is directed to raise her hand. (For more information
 about player masks, see Multiple Users, later in this document.)

• Once the user raises her hand, her silhouette is replaced with a
 cursor, and she is presented with a large button and instructed to
 “Push Here.” Note that this also serves as user education, teaching
 the press-to-select interaction. In user research, we found that this
 was enough to teach people to successfully press to interact with the
 rest of the application.

• After she presses the large button in the center of the screen, she is
 successfully engaged and enters the Home view of the application.

This is a fairly high barrier to entry, requiring a user to perform a deliberate action in
order to engage. Another option would be to skip this step and go directly to the home
page after a user raises his or her hand into the PHIZ.

Notes

Kinect for Windows | Human Interface Guidelines v2.0 97

Basic Interactions > Engagement

User handoff
After initial engagement, the Interaction
Gallery sample demonstrates how users can
hand off to another user.

The following occurs in the event that one user decides to
relinquish control to another:

• If, at any time, the primary (interacting) user drops her hand below
 the PHIZ, a second skeleton-tracked user has a chance to take over
 control and is assigned a blue color in the User Viewer.

• Messaging comes out from the small User Viewer to inform the second
 tracked user that he has an opportunity to raise a hand to take over.

• If the second user raises his hand, he has temporary control of the
 cursor and is prompted to press a button to take over.

• If, at any time before the second user presses, the first user raises
 her hand, she is still the primary user and will remain in control of
 the application, removing the ability for the second user to take over.

• If the second user completes the press, he is now the primary user,
 and has control over the cursor.

• If the primary user leaves, the application will give any other tracked
 user the chance to confirm engagement and remain in the current view.

Kinect for Windows | Human Interface Guidelines v2.0 98

This solution overrides the default engagement behavior
in the following ways:

• The primary user drops his or her hand but does not completely
 disengage and other users cannot immediately take over control.

• The primary user does not immediately switch when one user drops
 his or her hand and the second user raises his or her hand.

• A third User Viewer color is used for the candidate user who has the
 option of taking over control.

• The candidate user who is trying to take over control is temporarily
 the primary user, but will not remain so if he or she does not
 complete the required speed-bump action.

Basic Interactions > Engagement

Kinect for Windows | Human Interface Guidelines v2.0 99

Basic Interactions > Targeting

Targeting
After users have engaged with a Kinect for
Windows application, one of the first tasks is
to target an object (get to an area or item they
want to open or take action on).

Where people traditionally move a mouse or
move their hand over a touch screen, they can
now move their hand in the PHIZ to control a
cursor on the screen. We’ve enabled targeting
from a distance to enable natural integration
with other distance-based interactions.

We’ve found that people naturally move
their hands in the X, Y, and Z axes even when
they think they’re moving only in a single
axis. Our ergonomic PHIZ helps translate to
the screen what users think and feel they are
doing. As with any new input method, there’s
a slight learning curve, but users quickly learn,
especially as they continue to encounter the
same experience in all Kinect for Windows–
enabled applications.

As you design interfaces where users target
objects, consider the following.

Kinect for Windows | Human Interface Guidelines v2.0 100

Make controls easy to target, with
appropriate spacing, placement, and sizes.

Make sure visual feedback matches
user intent.

Provide audio feedback when the user
targets an actionable item.

Provide ambiguous feedback.

Make it clear which objects the user
can take action on.

Crowd multiple controls together or
make them too small to reliably hit.

(Our recommended smallest button size is
220px; see Screen Resolution.)

Make users guess which items they can
interact with.

Do Don’t

Basic Interactions > Targeting

Lorem
Lorem
ipsum dolor
sit amet,
consectetur

Lorem ipsum dolor Lorem ipsum dolor

ACTIONABLE NON-ACTIONABLE

Kinect for Windows | Human Interface Guidelines v2.0 101

Basic Interactions > Selecting

Selecting
Typically, users target an item in order to take
action on it. For example, they may want to
select a button that triggers a reaction, such as
navigation, in an application. In this document,
when we refer to selecting, we mean selecting
an item and triggering an action.

Kinect for Windows | Human Interface Guidelines v2.0 102

With the Kinect Region component in our SDK, we are supporting a new interaction
for selecting with Kinect for Windows: pressing. We’ve found that when presented with
a Kinect for Windows control, users naturally think of pressing with their hand in space;
it maps nicely to their understanding of the physical world where they press physical
buttons or extend their arm to point at objects. We support pressing many types of
objects (button, checkbox, radio button) as well as pressing items in selectable lists.

Basic Interactions > Selecting

If you’re building your own Kinect for Windows controls, consider using the press gesture
where it translates well, to keep experiences consistent and avoid forcing users to learn a
large gesture set.

Notes

Kinect for Windows | Human Interface Guidelines v2.0 103

Why is pressing
better than hovering?
The Basic Interactions sample in the 1.6 version
of the Developer Toolkit showed hovering as
the solution for selection. In that model, a user
must target a control, and then hold his or her
hand over that control for a specified amount
of time to make the selection. Although it’s
easy to learn, and dependable, hovering
over controls is not something users can get
better or faster at, and as a result, selection
interactions can seem tedious and slow. People
also tend to feel anxious about the hover
progress timer starting, so they keep moving
their hand, or feel they have to hold their hand
in a blank area so as not to inadvertently select
something. Pressing allows users to be precise,
but to go at their own pace and use a more
natural movement.

As we designed the pressing model, our goals were:

• Users can select with no training.

• Users can select anywhere on the screen.

• Performance improves over the hover model.

Basic Interactions > Selecting

We want users to be confident when they press to select and we want to make
inadvertent selections rare. Here are some of the problems we’ve worked to solve while
translating users’ hand movements and arm extensions in space to a press on the screen:

• A user means to simply target (moving in X and Y axes) when
 they are physically making some movements in Z.

• A user means to push or press “straight out” in Z when, in fact,
 he or she is moving quite a lot in X and Y.

• Different users will start pressing at different arm-extension levels
 (for example, some with their arm close to their body, some with
 their arm almost fully extended).

• Users need to cancel an inadvertent press gesture.

• Users need visual progress feedback: how much more do they need
 to press? Are they pressing when they don’t mean to?

• Users need to learn to press in order to select.

hover model press model

Kinect for Windows | Human Interface Guidelines v2.0 104

Buttons
Buttons should have a hover effect so that
users understand which button would be
selected if they pressed at that location.

In designing pressing with our button controls, we decided to trigger on release, similarly
to standard touch and mouse behavior. This enables users to cancel a press at any time
by moving their hand up, left, or right. Moving their hand down will trigger a release,
however, because we found that as people get confident with their presses, they often
drop their hand as they release.

Basic Interactions > Selecting

Kinect for Windows | Human Interface Guidelines v2.0 105

Button styles
We are providing two button styles you can
use: tiles and circle buttons.

You can change button sizes, shapes, and
colors, and also create your own, but we think
these styles are a good baseline and will cover
most of the common scenarios. The buttons are
the recommended sizes for 1920x1080 screens.
If you’re developing for a different screen
resolution, be sure to adjust the size, to make
sure your users can both hit them accurately
and read button text from the distance you
expect them to interact from. For a chart
of how button size translates for different
resolutions, see the chart in Best Setup for
Controls and Interactions, earlier in this
document.

In the Interaction Gallery sample, we show
an example of how to use the tile button style
tailored to specific experiences and styled for a
specific brand. Look at the Video Player module
to see a slightly different use of a circle button
(which is outlined on the following page).

Basic Interactions > Selecting

Tile buttons

• Tile buttons can fit in a grid, with equal padding between tiles. Padding can vary, if
 hit areas don’t overlap. For usability, button size is more important than padding.

• You can easily resize them to fit your design.

• Tile buttons are good for listing items, launching pages, or navigating.

• Tile buttons are built to be easy for users to target and select – keep them
 somewhat large so that they‘ll remain easy to target.

• Buttons, ideally, should have a small margin that is hit-targetable. This allows
 buttons without dead space between them, making it easier for users to select
 within a group of items.

In the Interaction Gallery sample, we use tile buttons for:

• Tiles on the home screen that navigate you to each of the modules

• Images that launch shadow boxes in both the horizontal scrolling view and the Article view

• The buttons for the engagement speed bumps

Kinect for Windows | Human Interface Guidelines v2.0 106

Basic Interactions > Selecting

Circle buttons

These can be used mostly for simple
navigation buttons (such as Back or
Home) or for settings.

• The design is a circle surrounding a glyph of your choice; you can also add text
 below or to the right of the circle.

• You can scale the size of the circle and text to fit your needs and resolution.

• You can replace the circle and glyph with an image of your choice.

• Make sure that they are easy to target and select on your resolution and screen size.

• The button and text are inside a rectangular area that is all hit-targetable – this
 enables users to be less accurate and still hit the button. The area of the button is
 larger than the visuals, which helps reduce clutter without making users struggle
 to select the buttons.

Some uses of circle button:

• Back buttons in various views

• The Close (X) button on shadow boxes

• The Play/Pause/Replay button on video views

Normal Hover Pressed Disabled

PLAY PLAY PLAYPLAY

Kinect for Windows | Human Interface Guidelines v2.0 107

Basic Interactions > Panning and Scrolling

Panning and
Scrolling
Scrolling enables users to navigate up and
down, or left and right; panning can enable
users to navigate freely in X and Y within a
canvas, like dragging a finger over a map
on a touchscreen. Experiences often allow
users to scroll and pan continuously, pixel by
pixel through content, at intervals through
a surface or page, or between consecutive
screens or views.

Kinect for Windows | Human Interface Guidelines v2.0 108

Basic Interactions > Panning and Scrolling

With the existing Scroll Viewer components, we’re supporting direct-manipulation,
continuous panning and scrolling interaction: grip and move. Kinect for Windows can detect
the user’s hand closing into a fist, called gripping. This interaction is a solution for scrolling
through lists or panning on large canvases, but might not be the strongest interaction for
navigation between discrete pages, screens, or views. The gesture allows for a high level of
control, but can be fatiguing to do repeatedly or for large jumps. You can place content or
controls inside a Scroll Viewer to add this experience to an application.

Although we’ve built grip recognition to work specifically for scrolling or panning,
consider using it for similar interactions, such as zooming, drag and drop, or rotating.

Gripping works best if the user is no more than 2m away from the sensor.

Gripping works best if users’ wrists are easily seen. Encourage users to remove large coats
or items on their wrists before interacting by gripping.

For paging or view-changing scrolling scenarios, consider using Kinect Buttons in the
scroll viewer, or above it, to help jump users to the place they’re looking for. When there
are discrete sections, it may be faster and less frustrating to navigate straight to them,
rather than scroll to them with direct manipulation.

Notes

Kinect for Windows | Human Interface Guidelines v2.0 109

Why is gripping to
scroll better than
hovering?
The Basic Interactions sample from the 1.6
version of the Developer Toolkit showed an
example of scrolling through a list of items by
targeting a large button and hovering over it,
making the canvas move at a constant pace.
Like using hovering to select, it was very easy
and reliable to use, but also frustrating and slow.
Although there are ways to make hovering to
scroll work better, such as allowing acceleration,
we’ve found that direct manipulation with grip is
a fun interaction and allows users to control their
speed and distance more deliberately.

As we worked on this new interaction with panning and scrolling in
mind, we had the following goals:

• Provide feedback when the user grips and releases.

• Enable users to successfully scroll short distances with precision.

• Enable users to scroll longer distances without frustration or fatigue.

1.6 hover model 1.7 grip model

Basic Interactions > Panning and Scrolling

Kinect for Windows | Human Interface Guidelines v2.0 110

Scroll Viewers
In order to provide you with the best arena
for panning and scrolling through lists
by gripping, we support interacting with
Xaml or WPF Scroll Viewers inside of Kinect
Regions with Kinect input.

Basic Interactions > Panning and Scrolling

Developer Options

• You can enable and disable scrolling in X or Y axes.

• The control allows free panning when both X and Y are enabled (imagine dragging
 around a canvas).

DETAIL

User Experience

• Users can grip anywhere within the Scroll Viewer and drag to directly manipulate
 the canvas.

• Users can grip and fling to scroll longer distances, and the canvas will continue
 moving while being slowed by a set amount of friction.

• The Scroll Viewer tries to correct for accidental scrolls in the wrong direction
 as users repeatedly fling.

• Users can stop a moving canvas at any time by gripping or pressing on the scrolling area.

• Ideally, when the end of a scrollable area is reached, it has a slight elastic bounce to
 provide feedback to the user.

Kinect for Windows | Human Interface Guidelines v2.0 111

Basic Interactions > Panning and Scrolling

Users should be able to scroll or pan by gripping any portion of the screen that actually moves
when scrolled (any part of the Scroll Viewer). The Scroll Viewer enables users to move their
gripped fist slowly for finer control, or “fling” the content if they want to traverse a longer
distance. The fling gesture is particularly helpful when users want to reach the beginning or
end of a list quickly.

The visual padding at either end of the Scroll Viewer, along with the elastic effect during
scrolling, and the bounce when the end is hit from a fling, help to indicate to the user that
they’ve reached the beginning or end of a list.

We suggest that you avoid using long scrollable lists of content in applications, because
repeatedly doing any gesture can be fatiguing and frustrating. Try to ensure that most users
can reach either end of a list with no more than two or three repetitions. Grip-and-move to
scroll or pan can be a fun and novel experience, but grip recognition while users are quickly
moving their hands is not extremely reliable, so we suggest that you reserve the Kinect Scroll
Viewer for non-critical tasks. Combining grip-and-move with other gesture interactions might
also make them both slightly less reliable.

Ergonomically, horizontal scrolling is usually easier and more comfortable for people than
vertical scrolling. Where possible, structure your user interface to allow for horizontally
scrolling content.

Also, remember that, as with any new gesture, user education is important. Many users
have never experienced a grip-and-move interaction before. Grip recognition works best
when users are deliberate about their hand positions. Sometimes half-closed hands are
misrecognized as grips. Many users figure this out quickly, but having clear messaging can
help avoid initial confusion or frustration.

Kinect for Windows | Human Interface Guidelines v2.0 112

Horizontal scrolling is easier ergonomically than vertical scrolling. If you have vertical
scrolling, do not design it to span the entire height of the screen.

Scroll Viewer areas that take up larger screen space are easier to scroll through.

It is less fatiguing for users if they don’t have to reach across their body to scroll.

Be sure to provide clear user education when you include grip scrolling in an interface.

Notes

Basic Interactions > Panning and Scrolling

Kinect for Windows | Human Interface Guidelines v2.0 113

Basic Interactions > Zooming (Z-Axis Panning)

Zooming (Z-Axis
Panning)
Zooming makes objects on the screen larger
or smaller, or displays more or less detail. Many
people are familiar with using a zoom control
with a mouse and keyboard, or pinching to
zoom on a touch screen. Zooming with Kinect
for Windows can be especially challenging
because it’s much harder to be precise about
distance, or start and end points, when users
aren’t directly touching the surface.

The Kinect for Windows SDK 2.0 provides a
built-in mechanism for implementing zoom
gestures. This model involves detecting when
the user’s hand is closed in a grip gesture and
then zooming as the user moves their hand
along the Z-axis toward and away from the
body. That is, increase zoom as the user’s hand
pulls in towards the body, and decrease as the
hand pushes out.

The following suggestions are based on existing
zooming UI that people might be familiar with.

Kinect for Windows | Human Interface Guidelines v2.0 114

Triggered zoom mode

UI that represents the hands,
or a symbolic visual, such
as arrows, to indicate that
zooming has been initiated.
This is useful if, for example,
the user triggers zooming by
holding both hands up.

Zoom control UI

UI that can be similar to a
slider from 0 to 100 percent.
It might be useful to enable
users to grab and drag the
slider, or press and hold
Forward or Back buttons on
either side.

VUI

Voice commands like
“Zoom 100%,” “Zoom in,” or
“Zoom out,” which enable
users to jump to different
zoom increments. Avoid
forcing people to do too
much repetition of voice
commands.

Basic Interactions > Zooming (Z-Axis Panning)

+

Kinect for Windows | Human Interface Guidelines v2.0 115

Z-axis zoom

This is the default zoom
model and involves
detecting when the user’s
hand is closed in a grip
gesture and then zooming
as the user moves their
hand along the Z-axis
toward and away from the
body. Z-space is typically harder to work with, so this can be a more

challenging, although intriguing, approach.

Basic Interactions > Zooming (Z-Axis Panning)

The goal of zooming is to manipulate an object on the screen and see the results. Here
are some ways to map user actions to zoom responses. As with anything that requires
direct manipulation, try to avoid lag, and keep the UI as responsive as possible.

Kinect for Windows | Human Interface Guidelines v2.0 116

Basic Interactions > Text Entry

Text Entry
Voice and gesture aren’t strong input methods
for text entry, and you should avoid designing
for it. Keep in mind that text entry with gesture
is usually a series of targeting and selecting
actions, which can get frustrating and tiring if
the user must do it multiple times in sequence.
If you expect users to need to enter text, and
they have access to alternative inputs such as
a touchscreen, it’s best to direct them to that
input method.

Kinect for Windows | Human Interface Guidelines v2.0 117

Basic Interactions > Text Entry

Avoiding ineffective input

Writing content by gesturing
or voice is very difficult, slow,
and unreliable. Searching or
filtering can be successful if
the user only needs to select
a few letters.

Virtual keyboard

A virtual keyboard is a
text-entry UI that people
might be familiar with. It an
allows for brief text entry by
targeting and selecting from
a list of letters.

Most targeting and selecting enhancements we’ve described for other inputs can be combined
to make text entry easier. For example, it can be useful to increase collision volume (a specified
range beyond the visual boundary within which an object responds to input) based on predicted
words, or filter letters available based on completion. As always, be sensitive to being too forceful
or presumptuous about what your user’s intent is, and leave them in control.

Kinect for Windows | Human Interface Guidelines v2.0 118

Enable text entry for searching, or filter
through a small set where only a few
letters are required.

Enable voice text entry with a small
number of recognized words.

Use voice for short phrases and for a
limited and appropriate set of tasks.

Require long text entry with a gesture
that imitates a keyboard experience.

Do Don’t

Require voice text entry with individual
letters (sounds are too similar: “B,” “P,” “V”).

Basic Interactions > Text Entry

Require long phrase dictation or
conversational voice input.

Kinect for Windows | Human Interface Guidelines v2.0 119

Additional
Interactions
In addition to the basic interactions of
targeting and selecting, scrolling, zooming,
and entering text, Kinect for Windows
enables more complex distance-dependent
interactions, as well as multiple input modes
and multiple-user scenarios.

Additional Interactions

121Kinect for Windows | Human Interface Guidelines v1.8

Kinect for Windows | Human Interface Guidelines v2.0 120

Distance-
Dependent
Interactions
With Kinect for Windows, users no longer
need to directly touch a computer in order to
interact with it. Of course, this introduces an
interesting set of considerations for designing
interactions and interfaces for larger distances.
This section describes how you can make your
interface more usable at any distance.

Additional Interactions > Distance-Dependent Interactions

Kinect for Windows | Human Interface Guidelines v2.0 121

Additional Interactions > Distance-Dependent Interactions

Interaction ranges
Users can interact with Kinect for Windows
from a variety of distances. These distances
are divided into the following categories:
Out of Range, Far Range, Near Range, and
Tactile Range.

Out of range (over 4.5 meters)

Most Kinect for Windows
interactions aren’t feasible
at this range. Your UI should
focus on broadly informing
users that an interesting
interaction is available, and
enticing them to move closer
with an Attract view.

Gestures that are fairly coarse-grained, and short commands, work
best in this range. The UI must be large enough to be visible from
far away.

Far (2.0 - 4.5 meters)

In Far Range, the user’s full
skeleton typically is visible.

Visuals must be very large and simple, and in some cases you can use
audio to get users’ attention. You could use this range to see general
shapes – for example, to see where movement is in the room.

Kinect for Windows | Human Interface Guidelines v2.0 122

Additional Interactions > Distance-Dependent Interactions

Near (0.5 - 2.0 meters)

In Near Range, a full
skeleton might be partially
obscured or cut off, but
this is a good distance for
seated mode.

Because the user is near to the sensor, you can have fairly detailed
visuals, longer phrases for speech, and finer gestures and depth data.
This is also a good range to work in if you plan to require object or
symbol recognition.

Kinect for Windows | Human Interface Guidelines v2.0 123

Additional Interactions > Distance-Dependent Interactions

Tactile (0.0-0.4 meters)

This is the range at which
people could use a touch
screen; thus by definition,
they must be no further
than an arm’s length away.

Because the user is close to the screen, this range can have the
highest level of detail for visuals and controls. (Many items, small
items, and fine detail.)

If your user is in Tactile Range, mouse, keyboard, and touch might be
more appropriate input methods than voice or gesture. Neither depth
nor skeleton data is available at this distance; depth data is limited to
at least 40cm in Near Range, and at least 80cm in Far Range.

Kinect for Windows | Human Interface Guidelines v2.0 124

Additional Interactions > Distance-Dependent Interactions

Content, text, and
target sizes
As the user gets further away from the screen,
the text and target sizes should adjust to
account for what he or she can see, and what
Kinect for Windows can adequately hear.
Also consider the increasing imprecision and
decreasing detail in hand-tracking and gestures
over distance.

Graphics-to-text ratio

As distance increases, consider increasing
the graphics and size of text, and reducing
the amount of text to maintain user
engagement and reduce visual strain.

Transitions

As the UI adjusts to users’ distance, use
transitions to help them keep their context
and understand how their movements affect
what they see.

User orientation

Consider using anchor points or unchanging
sections to orient users and provide consistency.

Visual consistency

Be consistent in the general location of items
that users can take action on.

Kinect for Windows | Human Interface Guidelines v2.0 125

Additional Interactions > Distance-Dependent Interactions

Item placement and
quantity
Two things factor into determining the
number of items on the screen that users
can take action on, and where the items
should be placed:

• The distance between the user(s) and
 the sensor

• Screen size and resolution

When designing screens, keep the following
in mind.

Object grouping

In general, grouping items in an easy-
to-reach area can help users have faster
interactions. Corners and edges tend to be
harder to target than the center.

Distance adjustments

With longer distances, text has to be larger
and gestures less detailed, which will most
likely lead to fewer gestures and voice
commands in Far Range.

Kinect for Windows | Human Interface Guidelines v2.0 126

Additional Interactions > Distance-Dependent Interactions

Adaptive UI
With an adaptive UI, your application can
dynamically adjust to optimize the experience
for a user based on his or her position and
height. An adaptive UI is most useful on large
displays where the user may not be able to see
or reach all of the content on the screen. The
application can adapt to show an appropriate
UI for the user based on his or her distance
from the screen.

Points of orientation

Remember to establish and maintain visual consistency as the application adapts to the user
in each interaction range. Refer to Content, text, and target sizes earlier in the document.
Consider the user-experience flow, and design the application so a user in the Tactile Range
can comfortably see and reach the interface elements related to his or her task without having
to move away from the screen.

Adapt to variable positions and user height

Since users can interact with Kinect for Windows sensor from a variety of distances, you can
design your application for the user at each interaction range.

• Users may begin interacting with the application from any range. Design your application
to adapt to the current position of the user. Refer to Interaction ranges earlier in this
document.

• Guide the user through the different ranges with appropriate cues and transitions so
he or she is never confused about what can be done at any given location. Refer to “User
orientation” and “Layout continuity” in Feedback Interaction Design earlier in this
document.

Kinect for Windows | Human Interface Guidelines v2.0 127

Additional Interactions > Distance-Dependent Interactions

Transitions

Use transitions to help the user keep context as they move between interaction ranges.

Design a transition that reveals or hides
additional information or detail without
altering or obscuring the anchor points
in the overall UI.

Guide the user with clear feedback so
they can control transitions from one
range to another. If a specific distance
is used as a transition threshold, allow
minor changes in the user’s stance so the
UI doesn’t change without specific intent.

Design UI where users can accomplish all
tasks for each goal within a single range.

Reflow text or content and discard visual
context from one range to another.

Do Don’t

Rapidly toggle between states when a user
is positioned at the boundary between
interaction ranges.

Don’t separate out tasks within one goal
and disrupt the flow of the experience by
having the user repeatedly cross ranges.

Kinect for Windows | Human Interface Guidelines v2.0 128

Additional Interactions > Distance-Dependent Interactions

User’s field of view

The user’s field of view and reach determines the most comfortable area for his or her
interactions based on his or her distance from the screen. At a Far Range the field of view may
be the entire screen. At a Tactile Range the field of view may be a small portion of the screen.

In adapting the UI to the user:

• Adjust the interface to account for the user’s field of view.

• Position the UI for Tactile Range interactions based on the user’s field of view and reach. This
is important on a larger screen where the user cannot see or reach the entire screen.

Adaptive UI at Tactile Range

Make sure the user has easy-to-reach access to the controls and information relevant to the
Tactile Range action. Avoid displaying information out of the immediate field of view that will
require the user to step back to see or access.

Kinect for Windows | Human Interface Guidelines v2.0 129

Additional Interactions > Distance-Dependent Interactions

Adaptive UI with multiple users

For experiences with multiple users, it may be necessary to provide individual UI controls for
each user. The individual controls can also be adaptive and may be based on the position
of each user. In addition, the application may continue to provide information, visuals, and
sounds targeted to other users observing the application. For more information see Multiple
Users later in this document.

Kinect for Windows | Human Interface Guidelines v2.0 130

Additional Interactions > Multiple Inputs

Multiple Inputs
Much as we often use both voice and
gesture to communicate with each other,
sometimes the most natural way to interact
with an application can involve multiple input
methods. Of course, with some options and
combinations, you risk creating a confusing
experience. This section outlines the ways to
make multimodal actions clear and usable.

We recommend designing your Kinect for
Windows apps to work with multiple inputs
(Kinect, mouse, touch, keyboard) to allow for
greater flexibility and easier troubleshooting.

Kinect for Windows | Human Interface Guidelines v2.0 131

Based on your use scenario, think about how you want your controls to
handle multiple inputs:

• Will users interact with the application by using more than one input
 at any given time?

• Do you want users to be able to use any input method or input at any time?
 Only with certain controls? Only at specified times in your task flow?

• Does one input method take priority over the others if multiple methods
 are used at once?

When controls detect multiple inputs, they should respond to the first one detected.

Additional Interactions > Multiple Inputs

Ideally, applications should have either the mouse cursor or Kinect Cursor be visible
and usable at any given time. The Kinect Cursor is on by default, but if mouse
movement is detected:

• The Kinect Cursor becomes disabled and invisible.

• The mouse cursor becomes visible.

• The Mouse UI affordances should show on controls in the application.

• The application frame with windowing controls becomes visible if the application
 is in full-screen view (which it is by default).

• After the mouse has been inactive for two seconds, Kinect for Windows mode
 comes back on and reverses the changes.

• All controls in the application respond to mouse, keyboard, and touch input
 at any time.

Kinect for Windows | Human Interface Guidelines v2.0 132

Additional Interactions > Multiple Inputs

Single mode
interactions
With single-mode interactions, multiple
input modes are available but only one
is used per action. For example, your
application might allow people to use voice
to trigger some commands, and gesture to
navigate; or it might use keyboard for text
input in Tactile Range and skeleton tracking
and gestures at a distance. Here are a few
things to remember.

User cues

Provide visual and/or audio cues to
the user about what input methods are
available.

Backup methods

Whenever possible, have a back-up input
method that users can switch to in order to
complete any given task (for example, either
mouse or voice for selecting a button).

Kinect for Windows | Human Interface Guidelines v2.0 133

Additional Interactions > Multiple Inputs

Multimodal
interactions
With multimodal interactions, the user employs
multiple input methods in sequence to
complete a single action.

Speech + gesture

The user points to a product,
and then says “Add to cart.”

Speech + touch

The user presses and holds a
photo, and then says “Send
photo.”

Speech + skeleton

The user says “Record,” and
then makes a movement.

Add to
cart

Send
photo

Record

Kinect for Windows | Human Interface Guidelines v2.0 134

Record

Reduce the number of steps for a
more complex action

For example, sending a photo typically takes
two steps using the same input method –
clicking the photo and then clicking Send.
With multimodality, this can become one
action with two input methods.

Enable triggering controls without
moving the user’s body

For example, if a task relies on a user’s body
being in a certain position, voice is a great
way to trigger an action without the person
having to move.

Here are some reasons to use multimodal interactions:

Additional Interactions > Multiple Inputs

Increase confidence

For example, it’s more likely that a command
will be not be executed accidentally if the
user has to do two things to perform it.

Make the best use of each input

For example, you might require voice input
to put the application into volume-setting
mode, but require gesture to give the input
for the actual volume level.

Send

Volume

Kinect for Windows | Human Interface Guidelines v2.0 135

Additional Interactions > Multiple Users

Multiple Users
Kinect for Windows v2 can track up to six
skeletons simultaneously. Up to two body/
hand pairs can be tracked as engaged
simultaneously. This opens the way for some
interesting collaborative interactions, as well as
new challenges regarding control and inputs.

Currently our Kinect for Windows controls and
interactions support up to two simultaneous
users.

This section covers what we know so far about
designing for multiple users.

Kinect for Windows | Human Interface Guidelines v2.0 136

Additional Interactions > Multiple Users

Tracking
Kinect for Windows can be aware of up to six
people as full skeletons with 25 joints.

Your application needs to select the two people who will be primary. We recommend that
the first two skeletons detected become the primary users by default.

Kinect for Windows | Human Interface Guidelines v2.0 137

Additional Interactions > Multiple Users

Multiple users and
distance
As you design experiences and build your
expectations, keep in mind the number
of people who can physically be in view,
depending on their distance from the sensor.
You can expect Kinect for Windows to track
the following number of people in each
distance range.

Number of People 0 1-2 1-6 0

Tactile Near Far Out of range

Kinect for Windows | Human Interface Guidelines v2.0 138

Additional Interactions > Multiple Users

Multiple users,
multimodality, and
collaboration
Enabling multimodality with multiple users
means that you can have many combinations
of people at different distances, using
different input methods. Depending on your
model for collaboration, there are some
important considerations for the different
ways of handling this.

Single-driver model

This model assigns one of the users as the
“driver” at any given time and registers
actions taken by that person only. The driver
role can be selected or transferred in a
number of ways, including designating the
first user to engage as driver, or the user
that is closer to the sensor. This is one way
to avoid conflicting inputs. Typically, this
model has visuals that show which person is
being tracked, and has only one cursor on
the screen at any time.

Equal participation model

This model takes input from both users, often
simply in the order that it’s given. This works
very well for scenarios where each user has
a unique experience to drive, as in games or
avateering (making one’s skeletal movement
affect the avatar’s movement on screen).
However, it can be a very complex model for
navigating or for basic interactions.

Collaborative interactions

Collaborative interaction is when two users interact with the same screen space and
inputs. This means that any action taken by one user affects the state of the application
for both. There are two options for balancing control in this case:

For the Interaction Gallery example of
handing off between single drivers, see
User Handoff, earlier in this document.

Kinect for Windows | Human Interface Guidelines v2.0 139

Additional Interactions > Multiple Users

You can handle this with screen partitioning or sectioning. In general, this experience
should be very similar to the single-driver experience described above; however, it’s an
extra challenge to correctly map each person’s speech and actions to the corresponding
interface. Voice commands can be a challenge. Gestures and movement should have
separate visual feedback per user.

Non-collaborative interactions

In a non-collaboratve interaction, each user has his or her own sub-experience within
the interface.

Kinect for Windows | Human Interface Guidelines v2.0 140

Conclusion
Kinect for Windows is at the forefront of
the revolution known as NUI—Natural User
Interface. The next generation of human-
computer interaction, NUI lets people
interact with any device, anywhere, using the
movements and language they use every day
in their lives. Microsoft Kinect for Windows–
enabled applications open a broad range of
new possibilities for people to interact with
computers in ways that feel natural. From
business to the arts, from education to gaming,
and beyond, NUI expands the horizons of
application development.

In this document we’ve provided you with
the tenets and best practices for creating
NUI applications, and guidance on both the
basic and more advanced Kinect for Windows
interactions for gesture and voice. We hope
our suggestions help you create “magical”
experiences for your users. Your development
of touch-free, natural UI will shape the way
people experience and interact with software
applications for years to come.

Conclusion

142Kinect for Windows | Human Interface Guidelines v1.8

	Introduction
	Meet the Kinect for Windows Sensor and SDK
	How Kinect for Windows sensor, SDK, and Toolkit work together
	What Kinect for Windows sees
	What Kinect for Windows hears

	Consider Sensor Placement and Environment

	Design Interaction
Tenets for
Kinect for Windows
	Overall Design Principles
	Strong Inputs
	The Right Input Mode for Your Task

	Gesture
	Basics
	Innate and learned gestures
	Static, dynamic, and continuous gestures

	Gesture Interaction Design
	Accomplish gesture goals
	Design for reliability
	Design for appropriate user mindset
	Design for natural interactions
	Determine user intent and engagement
	Design for variability
of input
	Make the gesture fit the user’s task
	Design for complete gesture sets
	Handle repeating gestures gracefully
	Avoid “handed” gestures
	Vary one-handed and two-handed gestures
	Remember that fatigue undermines gesture
	Consider user posture and movement ranges
	Teach gestures and enable discoverability
	Be aware of technical barriers
	Remember your audience
	Iterate

	Voice
	Basics
	About confidence levels
	Listening models
	Choose words and phrases carefully

	Voice Interaction Design
	Choose the right environment for voice

	Feedback
	Basics
	Consider what users want to know

	Feedback Interaction Design
	Best practices
	Use skeleton tracking feedback
	Use audio feedback
	Combine feedback

	Basic Interactions
	Best Setup for Controls and Interactions
	Setting the Stage: the Kinect Region, the PHIZ, and the Cursor
	The Kinect Region
	The Physical Interaction Zone
	The Kinect for Windows Cursor
	Common false positives for gesture

	Engagement
	Default engagement behavior
	The User Viewer
	Considerations for designing engagement
	Ease of engagement
	Initial engagement
	User handoff

	Targeting
	Selecting
	Why is pressing better than hovering?
	Kinect Button
	Button styles

	Panning and Scrolling
	Why is gripping to scroll better than hovering?
	Kinect Scroll Viewer

	Zooming (Z-Axis Panning)
	Text Entry

	Additional Interactions
	Distance-Dependent Interactions
	Interaction ranges
	Content, text, and target sizes
	Item placement and quantity

	Multiple Inputs
	Single mode interactions
	Multimodal interactions

	Multiple Users
	Tracking
	Multiple users and distance
	Multiple users, multimodality, and collaboration

	Conclusion

